Publications

Evaluating the efficacy of sonification for signal detection in univariate, evenly sampled light curves using astronify

J. Tucker Brown, C.M. Harrison, A. Zanella, J. Trayford

We performed testing of astronify, a prototype tool for sonification functionality within the Barbara A. Mikulski Archive for Space Telescopes (MAST). We created synthetic light curves containing zero, one, or two transit-like signals with a range of signal-to-noise ratios (SNRs=3-100) and applied the default mapping of brightness to pitch. We performed remote testing, asking participants to count signals when presented with light curves as a sonification, visual plot, or combination of both. We obtained 192 responses, of which 118 self-classified as experts in astronomy and data analysis. For high SNRs (=30 and 100), experts and non-experts performed well with sonified data (85-100% successful signal counting). At low SNRs (=3 and 5) both groups were consistent with guessing with sonifications. At medium SNRs (=7 and 10), experts performed no better than non-experts with sonification but significantly better (factor of ~2-3) with visuals. We infer that sonification training, like that experienced by experts for visual data inspection, will be important if this sonification method is to be useful for moderate SNR signal detection within astronomical archives and broader research. Nonetheless, we show that even a very simple, and non-optimised, sonification approach allows users to identify high SNR signals. A more optimised approach, for which we present ideas, would likely yield higher success for lower SNR signals.

MNRAS, 516, 5674 (2022), a pre-print is available here: https://arxiv.org/abs/2209.04465

Sound experts’ perspectives on astronomy sonification projects

N. Misdariis, E. Ozcan, M. Grassi, S. Pauletto, S. Barrass, R. Bresin, P. Susini

This articles comes from our Audible Universe workshop, hosted by us at the Lorentz Centre in 2021. We brought together astronomers and experts in sound design and perception. One main outcome of this exchange was a global view on the astronomical data sonification paradigm for observing the diversity of tools, uses and users (including visually impaired people), but also the current limitations and potential methods of improvement. From this viewpoint, this article presents basic elements gathered and contextualized by sound experts in their respective fields (sound perception/cognition, sound design, psychoacoustics, experimental psychology), to anchor sonification for astronomy in a more well informed, methodological and creative process.

Nature Astronomy, 6, 1249 (2022), a pre-print is available here: https://arxiv.org/abs/2211.12725

Sonification and Sound Design for Astronomy Research, Education and Public Engagement

A. Zanella, C.M. Harrison, S. Lenzi, J. Cooke, P. Damsma, S.W. Fleming

A review and perspective of sonification and sound design in astronomy (for research, education, outreach and accessibility) up until December 2021. We provide a summary of what has been done so far and success stories, as well as a discussion on why further progress and wider adoption has not been made to date. Finally we give some ideas of how to make further progress.

Nature Astronomy, 6, 1241 (2022), a pre-print is available here: https://arxiv.org/abs/2206.13536

Q&A: Accessibility in Astronomy for the Visually Impaired

J. Noel-Storr and Michelle Willebrands

This articles comes from our Audible Universe workshop, hosted by us at the Lorentz Centre in 2021. We spoke with four researchers to understand the accessibility challenges in astronomy research, education and outreach for blind and visually impaired (BVI) persons, as well as solutions to these challenges and how it innovates data analysis methods for all astronomers. Those interviewed: Nicolas Bonne (University of Portsmouth); Cheryl Fogle-Hatch (Museum Senses); Garry Foran (Swinburne University of Technology) and Enrique Perez Montero (Instituto de Astrofísica de Andalucía).

Nature Astronomy, 6, 1216 (2022), a pre-print is available here: https://arxiv.org/abs/2206.13815

Audio Universe Tour of the Solar System: using sound to make the Universe more accessible

Chris Harrison, James Trayford, Leigh Harrison and Nic Bonne

A description of the making of the planetarium show, lessons learnt along the way and how we applied our sonification code STRAUSS to create the sonifications.

Astronomy & Geophysics, 63 (Issue 2), 2.38-2.40 (2022), a pre-print is available here: https://arxiv.org/abs/2112.02110

Audible Universe - Meeting Report

Chris Harrison, Anita Zanella, Nic Bonne, Kate Meredith and Nicolas Misdariis

A short summary of the discussion points and outcomes of the workshop hosted in August 2021 called 'Audible Universe'. This workshop brought together experts in sound design, sound perception, astronomy and communication to discussion current and future applications of sonification in astronomy (for research, outreach, education and accessibility).

Nature Astronomy, 6, 22 (2022), a pre-print is available here: https://arxiv.org/abs/2206.13542